2021 WIND STUDY

Drift Case Investigations

Current State

What do we do now?

- Find the three closest AWOS/ASOS weather stations
 - Automated Weather Observing System / Automated Surface Observing System
 - Maintained by the Federal Aviation Administration (FAA) and National Weather Service (NWS)
- Look for closest recorded times relative to complaint
- Compare the data from each weather station
- Determine if relevant to case

Study Design

Does it work in the real world?

- Our Investigators record conditions in the field during complaint investigations:
 - Wind Speed and Direction
 - Anemometer
 - Calibrated Anemometer
 - Engenia Spray Tool
 - Pocket Spray Smart
 - RRXtend Spray App
 - Weather Station Data
 - Three closest stations
 - Closest time available

Data Collected

2021 Complaint Investigations

- Data collected during 34 cases
 - April to August
 - Variety of methods

Distance to Station (Miles)	Average	Std. Dev.
Closest Weather Station	18	9
All Weather Stations	32	17

Difficulties

Why this isn't easy

- Too many variables
- Limited amount of data
- Recording observations/ directions differently

- Rapid changes in weather station data
- Boom Height vs. Weather Station Height
- Circular Statistics
- Local Topography

First Blutwind Speed

Comparing Unadjusted Data

- AWOS/ASOS stations typically at 30 feet above ground
- Boom height ~24 inches, essentially ground level
- Field Recordings < Station Recordings</p>
- Deviation: 3 mph

Wind Diree#idjusted

Simplifying Direction

- "Rounded" all data points to one of the 4 cardinal or 4 ordinal directions. (N, NE, E, SE, S, SW, W, NW)
- Built model using stations $\leq 30 \text{ miles}$
- Deviation 57°
- 42% of all adjusted datapoints matched exactly

Wind Speletjusted

Correcting for Height Above Ground

 Adjusted using 1/7 Hellman Power Law Method

$$v_2 = v_1 \left(\frac{z_2}{z_1}\right)^{\alpha} \qquad \alpha = 0.143$$

Deviation 2 mph

Comparison to MisspußDStudynate Hub ADIM Workshop)

Did we get close to a study with >1,500 data points?

	Missouri Study	OISC Study
Data Points Collected	>1500	34 cases, ~100 datapoints
Wind Speed Variation	2-6 mph	2 mph
Wind Direction Variation	25-60°	57°

Thoughts and Next Steps

How useful is this?

- AWOS/ASOS stations are reliable for data gathering and can be useful information in drift cases.
- All models have exceptions.
- Topography and timing are important.
- AWOS/ASOS stations only part of an investigation

What can we do next?

